

NASA STATISTICAL ENGINEERING SYMPOSIUM

A RELIABILITY-BASED TOOL FOR LIFE LIMIT EXTENSION OF THE SPACE SHUTTLE MAIN ENGINE (SSME) A SPACE SHUTTLE LESSON LEARNED

Fayssal M. Safie, Ph. D.

NASA R&M Engineering Technical Fellow May 3-5, 2011

Outline

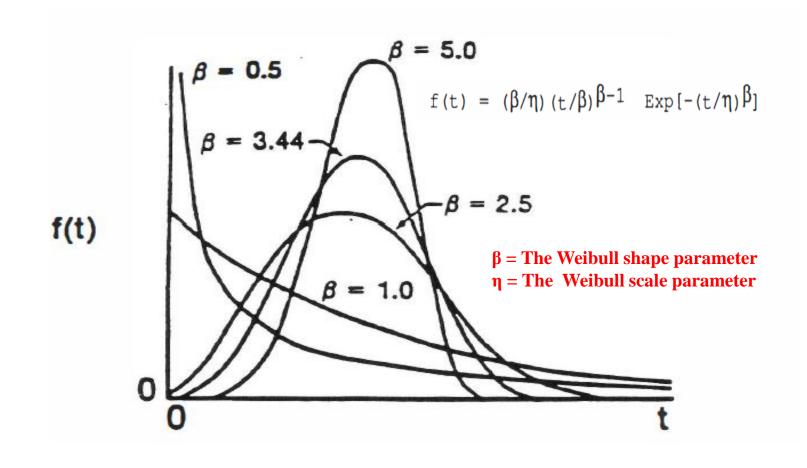
- Introduction
- The Need for the Tool
- The Mathematical Bases
- The Tool
 - Assumptions
 - The process
- The Application
- Concluding Remarks

Introduction – Related Material

- "A Criterion for Establishing Life Limits", 1990, by Gill Skopp and Al Porter.
- "A Statistical Approach for Risk Management of Space Shuttle Main Engine Components", 1991 Probabilistic Safety Assessment and Management Conference, Beverly Hills, CA, by Fayssal M. Safie.
- "Lower Bound on Reliability for Weibull When Shape Parameter is not Estimated Accurately", 1991, by Zhoa Huang and Al Porter.
- "Weibull Analysis Handbook", 1983, by R. Abernathy, C. Medlin, and G. Reinman.

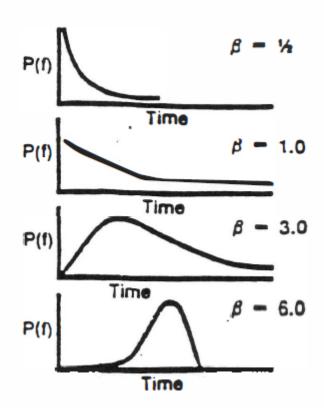
Introduction

- This work was done as part of the National Aeronautics and Space Administration (NASA) effort to introduce the use of Statistical/probabilistic models in managing the risk for critical Space Shuttle hardware.
- The result was a development of a statistically-based risk management tool to consistently and effectively extend the life limit of the Space Shuttle Main Engine (SSME) hardware based on the operational history combined with other engineering information.
- The purpose of the tool was to provide a standardized approach to disposition structural life limitations.
- The tool is called the Single Flight Reliability (SFR) criterion.


The Need for The Tool

The SSME Standard Flight Deviation Approval Request (DAR) Criteria

PARAMETER I	I I	SFR I	111 1	IV
DAR BASIS	ANALYSIS I	OPERATING HISTORY	ANALYSIS I	OPERATING HISTORY
MATERIAL PROPERTIES!	PREDICTED MINIMUM! /EXPECTED MINIMUM!	Difference Company	EXPECTED MINIMUMI	UNIQUE CONDITIONS
OPERATING STRESSES I	PREDICTED LOADS I	UNIQUE CONDITIONS!	MEASURED LOADS/ 1	UNIQUE CONDITIONS
1	ME.ASURED 1.OADS/ 1	1	STRESSES 1	
1	STRESSES	1	. CORRELATED 10 I	
1	EXTRAPOLATED	1	99/95	
1	I.DADS/STRESSES	1	1	
, 1	1	1	1	1/*
LIFE LIMITATIONS I	BASED ON ANALYSISI	25% FLEET LEADER I	BASED ON ANALYSIS	≤50% FLT. I E.MI.R/
	②→	STATIS.JUSTIFIED	≤ 50% [7L]	FAILED UNII
1		1 ≤ 50% [/L]	1	6 UNITS > LIMIT
!		I 6 UNITS ≥ LIMIT		
PERIODIC INSPECTION	NONE	I -NONE	25% I/L EXPOSURE	25%_LIFE_INTERVAL
	HCF:	1		
I LIFE FACTOR	1 10, PRED. MIN.	1 4	HCF: 2	2
1		(OR. 0.995/0.90)	I	I
1	I LCT: 4	15 (REL. IABILITY/	LCF: 4	l .
1	1	(CONFIDENCE)		


The Mathematical Basis The Weibull Probability Density Function

The Mathematical Basis The Significance of the Weibull Shape Parameter

- 1. Infant mortality
 - · Inadequate burn-in, green run
 - Misassembly
 - Some quality problems
- 2. Random failures
 - Independent of time
 - Maintenance errors
 - Electronics
 - · Mixtures of problems
- 3. Early wearout
 - Surprise!
 - Low cycle fatigue
- 4. Old age wearout (rapid)
 - Bearings
 - Corrosion

 β = The Weibull shape parameter

The Mathematical Bases – The Equations

The Weibull probability density function:

$$f(t) = (\beta/\eta) (t/\beta)^{\beta-1} \exp[-(t/\eta)^{\beta}]$$
 (two parameters)

The Weibull reliability and failure functions:

$$\begin{array}{lll} R\left(t\right) &=& \operatorname{Exp}\left[-\left(t/\eta\right)\beta\right] & \text{(two-parameters)} & \eta = \text{The Weibull scale parameter} \\ F\left(t\right) &=& 1 - \operatorname{Exp}\left[-\left(t/\eta\right)\beta\right] & \text{m = the single mission time} \\ \left(1-\alpha\right)*100 &=& \operatorname{The Confidence level} \end{array}$$

The Weibayes

$$\eta \geq \left(\sum_{(t_i^{\beta})/-\ln \alpha}\right)^{1/\beta}$$

$$\downarrow i=1$$

$$00\% \text{ Confidence} \qquad \eta \geq \left(\sum_{(t_i^{\beta})/2.3}\right)^{1/\beta}$$

$$\downarrow i=1$$

The Weibull conditional probability function:

$$P(T \ge t \mid T > t-m) = Exp[-(t/\eta)\beta]/Exp[-((t-m)/\eta)\beta]$$

The Tool - Assumptions

- Infant mortality situations are excluded.
- For a specific SSME component, all units have the same basic configuration and geometry, and all are tested in the same environment.
- Only SSME components with extensive fleet hot fire experience with no failure history are considered.

The Tool – The Process

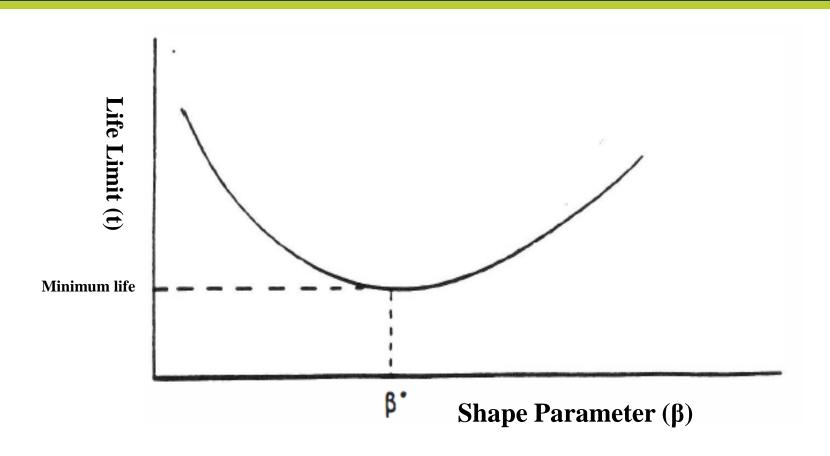
- The SFR Criterion uses a statistical approach to derive a life limit for a given component subject to a specified reliability and confidence level requirement.
- The statistical approach developed is based on Weibull timeto-failure distribution.
- Since the SFR Criterion applies only to components with no failures and the shape parameter of the Weibull distribution varies for different components, the Weibayes and a conditional Weibull reliability functions were used in combination with an optimization technique to derive a minimum life limit.

The Tool - The Process (continued)

Calculating The Minimum Life:

- 1) Assume a value of (β) of approximately one.
- 2) For the operational history of the item under consideration, estimate (η) at the 90% confidence level using:

$$\eta \geq (\Sigma(t_i^{\beta})/2.3)^{1/\beta}$$
 $i=1$


3) Use the β and η in steps 1 and 2, and the specified single flight reliability (i.e., 0.995) to determine the value of t using:

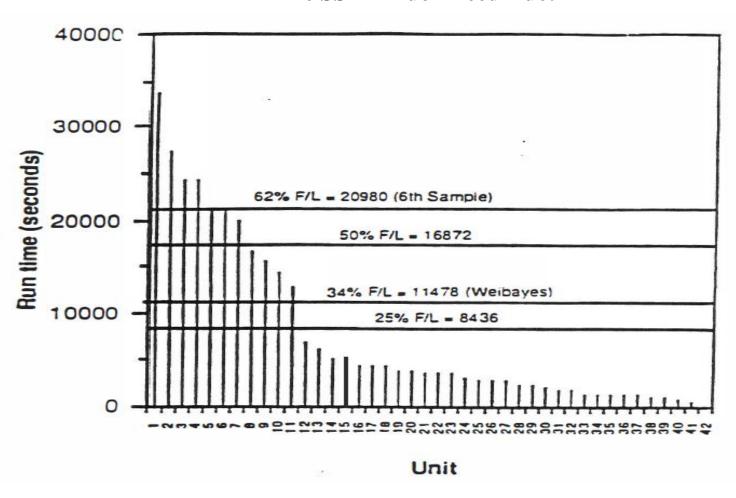
$$P(T \ge t \mid T > t-m) = Exp[-(t/\eta)\beta]/Exp[-((t-m)/\eta)\beta]$$

- 4) Starting from the second iteration, check if the value of t obtained in step 3 is higher than the value of t obtained from the previous iteration. If so, go to step 6.
- 5) Increment the value of β and go to step 2.
- 6) The value of t is the minimum.

The Mathematical Bases – The Minimum Life

The Tool - The Process (Continued)

- The minimum life limit derived is then checked to make sure that it does not exceed 50% of the operating time of the fleet leading unit, or the minimum operating time of the six leading units.
- If the life limit derived is less than 25% of the fleet leading unit, the life limit is increased to 25%.
- The life limit derived has a lower bound of 25% of the fleet leading unit and an upper bound defined by the lesser of 50% of the fleet leading unit or the lowest of the six leading units.


The Application - The SSME Fuel Bleed Duct

- Data on 42 SME fuel bleed duct units with zero failures are used here to illustrate the application of the SFR tool.
- Using this data, for a 0.995 single flight reliability and 90% confidence level requirement, the minimum total time, t, derived is 11,478 seconds.
- This value of t represents approximately 34% of the operational experience of the fleet leading unit of 33,744 seconds.
- The 34% is higher than the lower bound of 25% (8,437 seconds) and lower than the upper bound of 50% (16,87 2 seconds) and the minimum of the six leading units (62% of the fleet leader).
- Therefore, the life limit is 11,478 seconds.

The Application - The SSME Fuel Bleed Duct

Concluding Remarks

- The statistical tool presented was implemented as part of the Space Shuttle Program requirement.
- The tool has been effectively used by the Shuttle Program since the early 1990's.
- This is a good example of how Statistical Engineering has helped the SSME program to reduce cost, increase availability, and maintain high level of reliability of critical hardware.